Estimating Instantaneous Irregularity of Neuronal Firing

نویسندگان

  • Takeaki Shimokawa
  • Shigeru Shinomoto
چکیده

Cortical neurons in vivo had been regarded as Poisson spike generators that convey no information other than the rate of random firing. Recently, using a metric for analyzing local variation of interspike intervals, researchers have found that individual neurons express specific patterns in generating spikes, which may symbolically be termed regular, random, or bursty, rather invariantly in time. In order to study the dynamics of firing patterns in greater detail, we propose here a Bayesian method for estimating firing irregularity and the firing rate simultaneously for a given spike sequence, and we implement an algorithm that may render the empirical Bayesian estimation practicable for data comprising a large number of spikes. Application of this method to electrophysiological data revealed a subtle correlation between the degree of firing irregularity and the firing rate for individual neurons. Irregularity of firing did not deviate greatly around the low degree of dependence on the firing rate and remained practically unchanged for individual neurons in the cortical areas V1 and MT, whereas it fluctuated greatly in the lateral geniculate nucleus of the thalamus. This indicates the presence and absence of autocontrolling mechanisms for maintaining patterns of firing in the cortex and thalamus, respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Balanced excitatory and inhibitory inputs to cortical neurons decouple firing irregularity from rate modulations.

In vivo cortical neurons are known to exhibit highly irregular spike patterns. Because the intervals between successive spikes fluctuate greatly, irregular neuronal firing makes it difficult to estimate instantaneous firing rates accurately. If, however, the irregularity of spike timing is decoupled from rate modulations, the estimate of firing rate can be improved. Here, we introduce a novel c...

متن کامل

Estimating network parameters from combined dynamics of firing rate and irregularity of single neurons.

High firing irregularity is a hallmark of cortical neurons in vivo, and modeling studies suggest a balance of excitation and inhibition is necessary to explain this high irregularity. Such a balance must be generated, at least partly, from local interconnected networks of excitatory and inhibitory neurons, but the details of the local network structure are largely unknown. The dynamics of the n...

متن کامل

Estimating Spiking Irregularities Under Changing Environments

We considered a gamma distribution of interspike intervals as a statistical model for neuronal spike generation. A gamma distribution is a natural extension of the Poisson process taking the effect of a refractory period into account. The model is specified by two parameters: a time-dependent firing rate and a shape parameter that characterizes spiking irregularities of individual neurons. Beca...

متن کامل

Estimating nonstationary input signals from a single neuronal spike train.

Neurons temporally integrate input signals, translating them into timed output spikes. Because neurons nonperiodically emit spikes, examining spike timing can reveal information about input signals, which are determined by activities in the populations of excitatory and inhibitory presynaptic neurons. Although a number of mathematical methods have been developed to estimate such input parameter...

متن کامل

Statistical smoothing of neuronal data.

The purpose of smoothing (filtering) neuronal data is to improve the estimation of the instantaneous firing rate. In some applications, scientific interest centres on functions of the instantaneous firing rate, such as the time at which the maximal firing rate occurs or the rate of increase of firing rate over some experimentally relevant period. In others, the instantaneous firing rate is need...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neural computation

دوره 21 7  شماره 

صفحات  -

تاریخ انتشار 2009